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We consider the grand canonical partition function for the ordered one- 
dimensional, two-component plasma at fugacity ~ in an applied electric field E 
with Dirichlet boundary conditions. The system has a phase transition from a 
tow-coupling phase with equally spaced particles to a high-coupling phase with 
particles clustered into dipolar pairs. An exact expression for the partition 
function is developed. In zero applied field the zeros in the ~ plane occupy the 
imaginary axis from - ioo to -i_~ c and i~ c to Joe for some ~r c. They also occupy 
the diamond shape of four straight lines from + i~,. to ~, and from _+ i~c to - ~c. 
The fugacity ~ acts like a temperature or coupling variable. The symmetry- 
breaking field is the applied electric field E. A finite-size scaling representation 
for the partition in scaled coupling and scaled electric field is developed. It has 
standard mean field form. When the scaled coupling is real, the zeros in the 
scaled field lie on the imaginary axis and pinch the real scaled field axis as the 
scaled coupling increases. The scaled partition function considered as a function 
of two complex variables, scaled coupling and scaled field, has zeros on a 
two-dimensional surface in a domain of four real variables. A numerical discussion 
of some of the properties of this surface is presented. 

KEY WORDS: Partition function zeros; mean field transition; one- 
dimensional plasma. 

1. I N T R O D U C T I O N  

T h e  g r a n d  c a n o n i c a l  p a r t i t i o n  f u n c t i o n  for  a f in i te -s ize  s y s t e m  m a y  be  

c o n s i d e r e d  as  a f u n c t i o n  of  c o m p l e x  t e m p e r a t u r e  a n d  c o m p l e x  fugac i ty .  F o r  

a s y s t e m  w i t h  a l i q u i d - g a s  t r a n s i t i o n  t h e  t e m p e r a t u r e  ac t s  as a sca led  

c o u p l i n g  v a r i a b l e  a n d  t he  c h e m i c a l  p o t e n t i a l  ( o r  l o g a r i t h m  of  t h e  f u g a c i t y )  
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acts as a symmetry-breaking external field. For hard-core systems, the 
partition function is a polynomial in the fugacity and so has a finite 
number of zeros in the complex fugacity plane, as pointed out by Yang and 
Lee. (1/As the system becomes large, these zeros may coalesce onto arcs in 
the fugacity plane. If these arcs intersect the real positive axis in the 
thermodynamic limit, the system has a phase transition. For the ferro- 
magnetic Ising model (or attractive potential lattice gas) Lee and Yang (2~ 
showed that the zeros exhibit precisely this behavior with the arc being a 
segment of the unit circle. Later work by Penrose (3) showed that similar 
behavior may be expected for any system with a sufficiently repulsive core 
in the interparticle interaction. Fisher later introduced the idea of studying 
the zeros of the grand canonical partition function in the complex 
temperature and displayed these zeros explicitly for a two-dimensional 
ferromagnetic Ising model in zero field. (4) The partition function may be 
considered as a function of two complex variables, fugacity and temperature. 
The zeros in fugacity and temperature, for finite systems, determine the 
singularity structure of the pressure (or free energy). Thus far there has 
been little discussion of the zero surface in the two complex variables. 

For  Coulombic systems the situation is a little more complicated. 
Forrester (5'6/ has evaluated the partition function for a two-component, 
one-dimensional plasma with a logarithmic potential and showed that this 
system has a plasma phase to dipolar phase transition. For  coupling 
appropriate to the plasma phase the fugacity zeros lie on arcs which allow 
the zeros to cluster near the origin. In the thermodynamic limit the zero 
density is finite in any neighborhood of the origin. For  coupling appropriate 
to the dipolar phase, the zeros withdraw from the origin, but an arc of 
zeros cuts the positive real fugacity axis. Thus, while for many systems the 
physically interesting part of the zero distribution is around the critical 
fugacity on the real positive axis, for Coulombic systems the whole zero 
distribution is of interest. 

For  a system with a phase transition at temperatures and fugacities 
close to their critical values, one can construct a finite-size scaling theory 
representation of the partition function with the deviations of temperature 
and fugacity from their critical values scaled with the fractional powers of 
the system volume. Recently Itzykson e t a / .  (7) and Glasser e t  al. (8) have 
developed a theory which connects the distribution of zeros of this scaled 
partition function as a function of scaled coupling to the critical behavior 
of the thermodynamic free energy density at critical fugacity. Glasser e t  al. (9) 

illustrate this theory by considering the finite-size scaling partition function 
for a system with a generic mean field transition at critical fugacity. They 
were able to write this partition function in terms of a K1/4 Bessel function 
and thus identify its zeros in the complex scaled coupling plane. 
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In this paper we consider a one-dimensional neutral system of point 
charged particles which maintain the order - + - + . . . .  + on the line. 
The potential energy is derived from solutions of the one-dimensional 
Poisson equation. This system has been discussed by Smith and Forrester (lm 
in free and in periodic boundary conditions. In free boundary conditions 
the system has no phase transition and the grand canonical partition 
function, considered as a function of fugacity ~, has zeros on ( - i o c ,  - i~c ]  
and [i~ c, ioe) for a particular real ~c. The fugacity in this system is part of 
a dimensionless coupling parameter and the system is never in a plasma 
like state. In periodic boundary conditions the system does have a phase 
transition from a low-coupling phase in which the particles are equally 
spaced on average to a high-coupling phase in which the particles bind into 
dipolar pairs. Smith and Forrester showed that the finite-size scaled 
partition function as a function of complex scaled coupling had the same 
zero structure as found by Glasser e t  al. (9~ 

The natural symmetry-breaking field for this transition is an applied 
electric field. It is not entirely clear how such a field can be applied in 
periodic boundary conditions. Thus in the next section we describe the 
Hamiltonian for the system in Dirichlet boundary conditions, for which it 
is simple to include an applied electric field. In zero field the Hamiltonian 
is the same as in periodic boundary conditions. With or without external 
field, the calculation of the grand canonical partition function proceeds 
exactly as in periodic boundary conditions and the results are reported. In 
Section 3 the zeros of the zero-field partition function in the whole complex 
coupling plane are described. In the complex ~ (fugacity) plane these zeros 
lie on the imaginary axis on ( - i o e ,  - i~c ]  and [ i~ ,  Joe) and also on the 
square with corners at ___i~c and -+~c- Here ~c is a real critical fugacity 
value. In Section 4 the finite-size scaled partition function as a function of 
scaled coupling and scaled external electric field is derived. This scaled 
partition function is of mean field type. In zero scaled external field it is 
exactly the generic mean field partition function studied by Glasser e t  al. (9~ 

We develop asymptotic expansions for the zeros in complex scaled applied 
electric field with zero scaled coupling. Numerical studies then show that as 
the coupling increases, the zeros pinch the real axis. The field zeros are 
always pure imaginary for real coupling. In Section 5 the motion of the 
field zeros as the scaled coupling varies in the complex plane is described. 
The results are mainly numerical, but the motions are very complicated, 
even in this mean field case. 
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2. T H E  S Y S T E M  

We consider a system of 2N charged particles with particle j having 
charge qj = Qey, e~ = ( -  1)i, 1 <~ j <~ 2N. The particles are in an ensemble 
which maintains their ordering on the line -L/2<~x<<.L/2. Thus, the 
coordinates of the particles x~,..., x2N obey the constraints 

- L / 2  <~ xl <~ x2 ~ X3''" ~ X2N-- 1 ~ X2N ~ L/2 (2.1) 

The electrostatic potential gS(x) in the system is the solution of the 
one-dimensional Dirichlet problem 

2N 

gJ"(x)----2Q ~ e j 6 ( x - x j )  (2.2) 
j - - I  

on L/2 < x < L/2 with the boundary conditions 

7"( + L/Z) = T EoL/2 (2.3) 

where E o is the applied electric field. It is convenient to define 

2N 

M =  Z ejxj (2.4) 
j--1 

so that the dipole moment of a configuration {Xl, x2,..., X2u} is QM. The 
solution to the Dirichlet problem is 

2N 

g t ( x ) = - Q  ~ e k l x - x k l - ( 2 Q M / L  + Eo)x (2.5) 
k = l  

The Hamiltonian for the system may then be written 

1 Q2 2N 2N 
fft~D~R(E0)=--~ ~ ~ e j e k l x j - x k l - Q 2 M Z / L - E o Q M  (2.6) 

j = l  k--1 

With fi = 1/kT, and the scaled variables 

y = QZ/kT, co = EoQ/kT (2.7) 

this Hamiltonian may be simplified, using the ordering condition (2.1), to 

flfft~D~R(Eo) = --7M2/L + (y -- co)M (2.8) 

In zero field (co =0)  this is exactly the Hamiltonian for the system in 
periodic boundary conditions: the partition function evaluation techniques 
of Smith and Forrester ~176 may be applied. We write 

7/2N(L, 7, CO)=" exp[--TL(1 --03/7)2/4] [F2N(L, 7, co) (2 .9)  
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for the canonical partition function, where 

r L  ~x2/v CO 2 

[F2N(L, 7, co)=jo dx2NJo d X 2 N - l ' " f o 2 d X l e x p { ~ [ m - L ( 1 - 7 ) ]  } 

(2.10) 

We first introduce 

G2u(L, ~)= fodXzx fo~2Xdx2u_~ ... fo~2dxl exp(--eM) (2.11) 

which has a Laplace transform with respect to L given by 

~2N(S, ~) =--1 [S(S "~ ~)] N 
S (2.12) 

We then use the identity 

f 
oo 

exp(2x 2) = (re2) 1/2 du exp( -u2 /2  + 2ux) 
co 

(2.13) 

with 2=7/L and x =  [ M - 1 ( 1 -  co7)], to write ~:2N in terms of an integral 
over u on ( - o o ,  oo) of G2N(S,--2u). The grand canonical partition 
function is then 

Y_,(~, L, 7, co)= ~ ~2N[F2N(L , 7, CO) (2.14) 
N = 0  

If we insert the representation of 7/2N(L , ~, co) in terms of the inverse 
transform of F2N([, 7, co), add up the sum, calculate the inverse transform 
in terms of the residues at s+ = u + (u 2 + ~2)!/2, and manipulate the result 
a little, we obtain 

z(~, L, ~, co) 

2\7~z/ exp o~ du 1+---7 

xexp  - - - +  {exp[L(u2 +~2) 1/2] +exp[-L(u2 +~2)~/~]} 
7 

(2.15) 

This partition function displays a phase transition of mean field type in 
zero field. Details may be found in Smith and Forrester. (1~ The low-coupling 
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phase has p /pkT= 1/2 for F=Q2/2pkT>~I and p / p k T = l - F / 2  for 
0 ~< F~< 1. The  low coupling phase (0 ~< F~< 1) has the particles spread out 
uniformly with average spacing L/2N. In  the high-coupl ing phase the 
particles coalesce into small dipole m o m e n t  pairs ( - + - + - + . . . .  + ) 
or large dipole m o m e n t  pairs ( -  + -  + . . . .  + -  + )  with low and 
high dipole m o m e n t  density, respectively. The  symmet ry -b reak ing  field for 
this t ransi t ion is the external applied electric field Eo. 

3. Z E R O S  AT  ZERO FIELD 

In this section we consider the zeros of Z in he complex 4 = ~/~ plane 
in zero field. We change the variable of integrat ion in (2.15) to v = u/7 and 
put  co = 0, l = yL, and  4 = ~/7. We obtain  

.a'~(]24, l/y, ~, O) = 1( L~/~ )1/2 e x p ( - - l / 4 )  Z( 4, l) (3.1) 

with 

f 
o:3 

~((4, l) = e ~g~(~) + e tg:(€ dv (3.2) 

and 

g l ( / )  ) = (/)2 .j1_ 42)1/2  - -  /,)2; g2(v) = - ( v  2 + 42) 1/2-  v 2 (3.3) 

The zeros of S are then the zeros of  X(4, l) and we study these zeros as 
I ~ ~ ,  so that  we m a y  est imate Z by the me thod  of steepest descents. 

The  steepest descent evaluat ion gives contr ibut ions  to X for some or all 
of the saddle points  of gl  and g2. These saddle points are at 

for gl: g ] ( v j ) = 0 ,  j =  - -1 ,0 ,  1 with v_+l= __(1 ~2)1/2, /)0= 0 (3.4a) 

for g2: g ; ( v ) = 0  only for v = 0  (3.4b) 

The  square roo t  is defined so that  g'2(v) = 0 has only the solution v -- 0. 
Not ice  that  )/(4, l) is even in 4, so that  if 4o is a zero, - 4o is a zero. Fur ther  
notice that  with the asterisk representing complex conjugation,  Z*(r l ) =  
X(~*, l). Thus,  if 4o is a zero, 4"  is also a zero. This means  that  we m a y  
find all the zeros of Z(~, I )  by considering Re(~)>~0, Im(4)>f0 .  Fo r  

= {r + iv with (r ~> 0, z ~> 0, we cut the complex v plane f rom - r + icr to 
- r  + i ~  and  f rom z -  icr to z - i o o .  At the saddle points  we have 

gl(vo) = ~, g2(0) = - 4 ,  g l ( v + l ) =  �88 ~ 2 (3.5) 
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and the second derivatives 

, 1 
g ~ ' ( v o ) = ~ - 2 ,  g ~ ' ( 0 ) = - ~ - - 2 ,  g , l , (v+ l )=8  r  . (3.6) 

A zero of Z m a y  arise in one of two ways: 

(i) The saddle point  v o of  gl  dominates  those at v+~, and the 
cont r ibut ion  of the integral over  exp[lgl(v)] cancels the contr ibut ion of the 
integral over  exp[Ig2(v)]. This requires 

Re [gl(Vo)] > R e [ g l ( v  + 1] (3.7a) 

and 
Re[g~(vo)  ] = R e [ g 2 ( 0 ) ]  (3.7b) 

Setting ~ = a + iT again, Eq. (3.7a) gives 

I~1 > l a -  �89 (3.7c) 

while Eq. (3.7b) gives a = - a ,  so that  this type of zero can only occur  
when a = 0 and [rl > 1/2. 

(ii) The  saddle points  v0 and V_+l must  all be on the contour  of  
steepest descent and we must  have 

R e [ g l ( v  +x)] = R e [ g l ( v 0 ) ]  ~ (a - �89 _ r2 = 0 (3.8a) 

and these saddle points  must  domina te  that  of g2 at v = 0. This requires 

- ~r < a (3.8b) 

which always holds in the first quadran t  of the ~ plane. Further ,  the 
imaginary  parts  of  g~(v+_~) and gl(vo) m a y  not  all be equal, for then there 
could be no possibili ty of the contr ibut ions  canceling to produce  a zero. 
This requirement  is not  simple: on an analytic pa th  of steepest descent the 
imaginary  par t  of  the function is constant .  To  produce  a zero of )( by this 
mechanism,  the pa th  of  steepest descent must  go f rom - o o  to the point  
- r  +ia on the cut f rom - r + i a  to - ~ + i o o ,  via the saddle point  v 1, 
then round  the cut to ano ther  point  on it, then via an analytic con tour  
over  the saddle at v = 0 to the other  cut, round  the cut to r -  ia, and then 
to + oo v i a  the saddle point  v~. The par ts  of the con tour  from one point  
on a cut to ano ther  point  on the cut are where the imaginary  par t  of the 
function changes. 

Fo r  a zero of )~ of this second type in the first quadran t  of 4, Eq. (3.8a) 
shows that  we must  have either r = a -  1/2, a ~> 1/2 or z = 1 / 2 -  a, 0 ~< a ~< 1/2. 

822/66/1-2-16 
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For  ~ = 0- - 1/2, 0- >~ 1/2, a careful calculation of the values of  I m [ g , ( v ) ]  on 
bo th  sides of the cut f rom - (0- - 1/2) + i0- to - (0- - 1/2) + ioo shows that  
a con tour  on which I m [ g , ( v ) ]  = I m [ g , ( 0 ) ]  which passes through v = 0  
cannot  intersect the cut. Thus,  for r = 0- - 1/2 there is a cont inuous  steepest 
descent con tour  f rom - o o  to + oo which avoids bo th  v+~ and the two 
cuts. Hence  there are no zeros of this type for ~ = 0 - + i ( 0 - - 1 / 2 )  with 
0-/> 1/2. On  the other  hand,  for r = 0- + i(1/2 - 0-), 0 <~ 0- ~< 1/2, the con tour  
with I m [ g l ( v ) ]  = I m [ g ~ ( 0 ) ]  th rough  v = 0  does intersect the cuts. 

In this case the con tour  of steepest descent goes f rom v - - * - o e  to 
v =  i~ over  the saddle point  at v x {with I m [ g ~ ( v ) ]  = 0 - ( 1 - 2 0 - ) } ,  then up 
the r ight -hand side of  the left-hand cut to a point  g { I m [ g , ( v ) ]  changes 
f rom 0-(1-20-)  to 0 - -  1/2}, then f rom g to - g  on the left-hand side of the 
r ight -hand cut {with I m [ g ~ ( v ) ]  = 0 - - 1 / 2 }  over  the saddle point  at v = 0, 
then up the left-hand side of the r ight-hand cut f rom - g  to - i ~  
{ I m [ g , ( v ) ]  changes f rom 0 - - 1 / 2  to 0-(1-20-)},  and then f rom - i ~  to 
v--+ +co  over  the saddle point  at v+l  {with I m [ g l ( v ) ]  = 0 - ( 1 - 2 0 - ) } .  

Thus,  for 

= o + i(0- - �89 0 .< 0- .< �89 (3 .8c )  

the three saddle points  v o, v+ 1 of gl(v) can produce  a zero of Z(r 1). 
If  we now put  r = i~ with ~ > 1/2, a s tandard  steepest descent evaluat ion 

of the integrals of Eq. (3.2) gives 

where 

COS(IT--~) [1 2i- O(l--1)] (3.9) 

, (1) 
q~ = ~ arc tan  ~ (3.10) 

Hence,  for n > l/2~ there are par t i t ion function zeros at 

~=i(n+l+A,)rc/l[l+O(l L)] (3.11) 

where 0 ~ A, .G< 1/4. 
On  the line ~ = 0 - + 1  1 ~(~-0 - ) ,  0~<0-~< �89 there are contr ibut ions f rom 

three saddle points  to )~ and  a single evaluat ion gives 

1 (1 1 1/2 Z(r162 1/2)]~1/2[ el(~ 1/2)2+2_ + 3 ) ]  [ 1 + O ( 1 - 1 ) ]  

(3.12) 
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We then find z e r o s  ~m = 1/2 - rm + iz,~ with 

[ (  1 \ 1  u2 l 
~,,= m - 5 ~ / Z ) J  [ 1 +  O ( Z - ' ) ]  for O<~m<~s (3.13) 

The  results in Eqs. (3.11) and (3.13) together  with the symmetries  ~ ~ - ~  
and ~--, 4"  give a complete  descript ion of the zeros of 7.(~, l) in the ~ plane. 

We may  finally consider the density of  zeros along the arcs in the 
complex ~ plane on which they lie. In the limit l--* oo we may  write 

lim (1/l)logz(~,l)=;clog[1-~/~(s)]p(s)ds (3.14) 
l ~ o o  

where s is an arc length variable along the lines of zeros we have just  
found. On ~ = ir for r > 1/2, s = r, ~(s) ~< is, and the density is p(s) = 1/7c, a 
constant.  On ~ = a + i ( 1 / 2 ) - a )  for 0~<cr~<l/2, s = ( 1 / 2 - a )  x/2 , ~ ( s ) =  
! / 2 -  ( 1 -  i)s/x/2 , and the density is p(s)=s/~ with s =  0 at ~ = 1/2. There 
are similar zero densities on the other  arcs of zeros. We note that  the zero 
density becomes zero at  the critical value ~ = 1/2. We sketch the distr ibution 
of zeros in Fig. 1. 

i m (~)  

Fig. 1. Sketch of zeros and their densities for Z(~, l) as l-o oo. 
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We may also note that the arcs of zeros cut the positive real r axis at 
= 1/2 at an angle of 3zc/4, not re/2. The transition is in fact of mean field 

type and the angle 3~/4 is in agreement with the theory developed by 
Glasser et al. (8) for the zeros of the finite-size scaling partition function. The 
variable ~ = ~/? is a coupling variable in this system, so that fugacity does 
not play the role envisaged in Yang-Lee theory and there is no expectation 
that the zero arcs should cut the axis at an angle of ~z/2. 

4. FINITE-SIZE SCALING A N D  FIELD ZEROS 

The critical point is at ~ = 1/2 and co = 0. Near this critical point the 
dominant contribution to the partition function -= of Eq, (2.15) comes from 
the term with exp[L(u 2 + ~2)1/2]. The saddle points of the exponent are all 
close to u = 0. We introduce the scaled variables 

and 

K = (~L)l/2 ( ~ -  1) (4.1) 

~'~ ~- (~L)3/4(D (4.2) 

and define 

F(K, •)= l i m  ,-.,=({711 - ~c/(7L)U2], L, 7, ( ~ L )  -3/4~'~) F ( 1 / 4 )  (4.3)  
L~ ~ 2Z(7/2, L, 7, 0) 

If we expand the exponent in the integrand in Eq. (2.15) to fourth order in 
u, introduce ~c and /2, and change the variable of integration to 
v = u(TL)  1/4, we obtain 

oo 
F(~c, (2) = e x p ( - - u 4 + K u 2 + f 2 u )  du 

4~ 

(4.4)  

im(~) 3o-~2O_~o_ 
0 

-8 -,, 6 ,~ ~ 12 16 
re ('We) 

Fig. 2. 

2O 

Plot of Im[f2n(~) ]  for real K for n = 1, 2, 3, 4, and 5, 
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which is the finite-size scaled partition for the system close to its critical 
points. It is a generic mean-field-theory partition function38) 

In this section we consider ~c real and find 12,,(~c) defined by 

F(~:, 12,(K)) = 0 (4.5) 

so that there are many branches n of 12(tc). 
Note that if F(K, 12)=0, then F (~c , -1 2 )=0 ,  F(K*,12*)=0,  and 

F(K*, - - f2* )=  0. We can construct an asymptotic expansion of F(K, 12) for 
large 1121 in powers of [121 1. The expansion produces zeros because the 
contour of steepest descent for real ~c is divided in three parts (like Gaul), 
from - o o  to ioo, from ic~ to - i oo ,  and then from - i o o  to 0% each part 
crossing a saddle point. For  ~c = 0 the zeros are all pure imaginary, with, 
for n~> 1, 

,47 1 +++ +,] 
8912 

(4.6) 

There is no 12o(0), but the symmetries of F imply another set of zeros, 
12,(0) = -12_, (0) ,  for n ~< - L .  For  n = 3 this expansion and the numerical 
value differ by one in the fourth significant figure and for n = ! this 
difference is two in the third significant figure. In Fig. 2 we plot the 
imaginary part of 12, as a function of real K for both positive and negative ~c. 
The real part of f2.(~c) is zero whenever ~c is real. Note that increasing ~c 
corresponds to increasing the coupling in the system. Thus, for real 
coupling the line of zeros in the finite-size scaled symmetry-breaking field 
12 cuts the real axis at an angle of ~/2, as might be expected from the 
Yang-Lee picture. Figure 2 also shows the partition function zeros pinching 
the real axis as the coupling increases through its critical value: the actual 
spacing in field between these zeros and the real axis is O(L 3/4). 

12 

G- 

e- 

3 

0 
-2 

Fig. 3. Plot of trajectory t2,,(ke ir for n = 1, 2, 3 for k = 1. 
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5. Z E R O S  I N  B O T H  V A R I A B L E S  

In this section we present numerical data  on the mot ion  of the zeros 
f2,,(~c) in the complex f2 plane for ~: a complex variable. We take ~c = ke i~, 
0 ~< q~ ~< 2re, and plot the trajectories of the f2n(keiO). To aid this discussion, 
we call the solutions of F(~c, 0 ) =  0, K7 m = k m  ei~m with km and ~bm real. These 
~c m have been discussed in some detail by Glasser et al. (91 

im (s 

im(~) 

20" 

15 

10 

-10 

20 

10 

l 

0 

-10 ; 
-10 

,-e (.0.) 
(a) 

C_> 
(b) 

10 

re(It) 

Fig. 4. 

11 
re ('~) 

(c) 
Plot of trajectories of f2,(ke ir for n - l ,  2, 3 for (a) k=4.35, (b) k=4.385, 

(c) k = 5.05. 
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First we consider k small compared  with kl .  At ~b = 0 we have zeros 
~n(0 )  which can be read off the graph in Fig. 2. As ~b increases, we expect 
Qn(ke i~) to move  in a loop with Re(f2n) > 0 to begin and then re turn to the 
imaginary  axis at ~b = 7r at a larger value of Im(f2m), with a symmetr ic  loop 
returning to Q,(~c). This is shown in Fig. 3 for the zeros ~1 ,  s and f23. 
There  are also zeros, not  drawn, ~?,,(kei~163 The zeros in 
Figs. 3-6  are all for n = 1, 2, 3 f rom b o t t o m  to top. 

As k increases to km, these loops must  become more  complicated,  since 
at K=km ei~", Qm=O. Thus  the loop t ra jectory of f21 must  dent at the 
b o t t o m  and the edges of the dent close into the origin. If we have 

----tom ei(Om+6~), then we have, for small f~, 

)f+ F(~c m, Q)  -~ /2 2 + i ~  &b u2eU4 + ~.~.2 du 
czo 

(5.1) 

so that  the t rajectory crosses itself at &b = 0. In  Figs. 4a and 4b we show 
the trajectories for k < kl  and k > kl  and k 1 -~ 4.38. In Fig. 4b, the loop of 
s has inverted itself and has a small subloop on top. This subloop gets 

imP-Q) 

Fig. 5. 
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Plot of trajectories of s i~) for n = 1, 2, 3 for (a) k = 5.5, (b) k = 5.55. 



2 4 6  R o u m e l i o t i s  a n d  S m i t h  

drawn tighter as k increases to k-~ 4.95, when the trajectory has a cusp 
because c~F/C12--0 on the trajectory. This is shown in Fig. 4c for k--5.05,  
where the turning point is not singular, but very sharp and more obvious. 

It should be noted that these graphs of trajectories should be augmented 
by the graphs of 12 _ 1, 12 - 2, 12 - 3. 

As k increases further toward k2, the loop of 122 also becomes dented on 
the bottom. A crossover phenomenon occurs near k = 5.5 (when CF/O~c = O) 
between this developing dent and the subloop from the 121 trajectory. This 

Fig. 6. 
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(c) 
Plot of trajectories ofO,(ke ~~ for n= l, 2, 3 for (a) k= 6.4, (b) k= 6.6, (c) k=6.65. 



Partition Function Zeros for 1 D Ordered Plasma 247 

is shown in Figs. 5a and 5b. This crossover  flattens out  the dent in the 
b o t t o m  of the f~2 t rajectory and leaves a "kno t "  in the s trajectory. The 
dent  in the f2 2 t rajectory then develops further, pinching into the origin at 
k = k2-~ 6.6. Meanwhile ,  a crossover  p h e n o m e n o n  occurs between the 121 
and (2 3 loops. These are shown in Figs. 6a-6c. Each s t rajectory inverts 
(with an upper  subloop)  as k passes km. The general s tructure of the f~n 
trajectories is then fairly clear. 

Perhaps  the mos t  interesting feature of these trajectories is their quite 
ex t raord inary  richness in behavior ,  which suggests that  similar studies in 
the joint  complex coup l ing-complex  field space for more  complex phase 
transi t ions would be very interesting. 
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